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Quantum mechanical operators and quantum fields are interpreted as realizations 
of timespace manifolds. Such causal manifolds are parametrized by the classes 
of the positive unitary operations in all complex operations, i.e., by the 
homogenous spaces D(n) = GL(C~/U(n) with n = 1 for mechanics and n = 2 
for relativistic fields. The rank n gives the number of both the discrete and 
continuous invariants used in the harmonic analysis, i.e., two characteristic masses 
in the relativistic case. 'Canonical' field theories with the familiar divergencies 
are inappropriate realizations of the real 4-dimensional causal manifold D(2). 
Faithful timespace realizations do not lead to divergencies. In general they are 
reducible, but nondecomposable--in addition to representations with eigenvectors 
(states, particle), they incorporate principal vectors without a particle (eigenvector) 
basis as exemplified by the Coulomb field. 

~ T R O D U C T I O N  

Quantum theory deals primarily with operations, e.g., t imespace transla- 
tions and rotations or  hypercharge and isospin transformations. Its experimental 
interpretation relies on states or particles, i.e., eigenvectors o f  asymptotical ly 
relevant operations. The particle properties (mass, spin, charge etc.) we are 
measuring are the corresponding eigenvalues. The modali ty structure o f  quan- 
tum theory, e.g., the probability amplitudes, is formulated using complex  
linear structures with conjugations. Therefore, complex linear operations and 
their unitary substructures--not  necessarily positive uni tary2--play the central 
role in quantum theory. 

t Max-Planck-Institut fOr Physik und Astrophysik, Wemer-Heisenberg-Institut for Physik, 
Munich, Germany; e-mail: saller@mppmu.mpg.de. 

2In the orthogonal and unitary groups O(N§ N_) and U(N+, N_), respectively, the positive 
orthogonal and unitary ones are O(N) and U(N), respectively. 
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2784 Sailer 

The characterization of particles as positive unitary irreducible represen- 
tation of the Poincar6 group by Wigner (1939) is an asymptotic experimentally 
oriented language. A particle language, i.e., an eigenvector basis, is too 
narrow to describe interactions. Following up the identity of particles in their 
interaction is impossible--one tries to evade or circumvent the particle- 
interaction complementarity using words and concepts like 'off shell' or 
'virtual particles' or 'ghosts,' etc. There are interaction structures which do 
not show up in the projection to a particle basis. 

First of all, the nontranslative homogeneous interaction symmetries are 
truly larger than particle symmetries. Concerning external operations, particles 
have homogeneous symmetry properties only with respect to the 'little groups' 
spin SU(2) or helicity (polarization) U(1), which are true subgroups of the 
interaction-compatible Lorentz SL(C 2) group. With respect to the internal 
operations as seen in the interactions of the 'standard model of elementary 
particles,' there remains for particles only an abelian U(1) electromagnetic 
symmetry, defined as the internal 'little group' (fixgroup) of the degenerated 
ground state, as subgroup of the hyperisospin transformation group U(2). If 
color SU(3) confinement holds, only color singlets arise as particles. 

In addition to these projections from the 'large' interaction symmetries 
to the 'little' particle symmetries, both for external and internal operations, 
there are operational structures in the dynamics without any asymptotic 
particle trace, the most prominent ones given by the Coulomb and gauge 
degrees of freedom of the standard interactions, formalized in relativistic 
nonabelian quantum field theory in cooperation with Fadeev-Popov degrees 
of freedom (Becchi et al., 1976; Nakanishi and Ojima, 1990). All those 
'ghost' structures come in connection with indefinite unitary representations 
of timespace translations (Sailer, n.d.) ultimately tied to the indefinite structure 
of the noncompact Lorentz group O(1,3) which is indispensible for a nontrivial 
relativistic causal order. 

This paper is an attempt to connect the asymptotic concepts 'particle' 
and even 'time' and 'space' with the interactions on a deeper operation- 
oriented (Finkelstein, 1996) level. Timespace will be formalized by a coset 
structure--as the noncompact real homogeneous space D(n) = GL(C~)/U(n) 
which is the manifold of the positive, unitary, probability amplitude-related 
operations U(n) in all complex linear ones. The causal manifold D(n) has 
real dimension n 2 and real rank n. The abelian case n = 1 involves the real 
1-dimensional causal group (time) D(1) as the framework which is extensively 
used in quantum mechanics. The next simple case with timespace rank n = 
2, the first nonabelian one, involves the real 4-dimensional homogeneous 
manifold D(2) with internal stability group U(2), it shows all the features 
familiar from relativistic quantum field theories. 
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The rank n of the causal manifold D(n) shows up in the number of  real, 
continuous invariants used in its representations. The representations of  the 
causal group D(1) are characterized by one continuous invariant (frequency) 
to, which serves, e.g., as unit in energy eigenstates of a quantum mechanical 
dynamics, whereas the representations of GL(C 2) for the homogeneous time- 
space D(2) involve two continuous invariants which may be tentatively called 
a particle mass m~ and an interaction mass m2---or m~ and a dimensionless 
ratio m ~/m 2, possibly related to the coupling constants used for relativistic 
interactions. 

A parametrization of timespace manifold D(n) realizations by vectors 
of complex linear representation spaces leads to the concepts of quantum 
mechanical operators for n = 1 and relativistic quantum fields for n = 2. In 
the latter case, the representation of the rank 2 operations in D(2)- -not  only 
rank 1 (time translations) as done in conventional particle-oriented linear 
quantum fields--gives rise to a framework where product representations are 
definable without the light cone-supported divergencies found for interacting 
linear quantum fields. 

1. " C A N O N I C A L "  QUANTIZATION 

Quantum mechanics as a theory for time-dependent operators was very 
successfull. The quantization involved, called "canonical", was simply taken 
over- - in  a Lorentz-compatible extension--for  timespace-dependent opera- 
tors (quantum fields). 

1.1. Quantum Structure in Mechanics 

Heisenberg's noncommutativity condition [iP, X] = 1 (in units with 
h = 1) for position-momentum operator pairs (X, P) is the trivial time t = 0 
element of  time representations 3 [iP, X](t) by a quantum mechanical dynamics, 
e.g., in the--not  only historically relevant--simplest example of the harmonic 
oscillator with Hamiltonian H = P2/(2M) + KX2/2, involving a mass M and 
a spring constant K or a frequency m 2 = K/M and an intrinsic length 14 ---- 

l/~14t: 

d x(t) = ml2p(t) 1 

d p(t) - ~  x ( t )J  [iP, X](t) = cos mt (1) 

3The linear dependence is used in the notation [a(y), b(x)] = [a, b](x - y), etc. 
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The eigenvectors of the time translations can be built by products of the 
creation-annihilation pair (u, u*) 

u 1,/2 iP d ~ (u*)k(u)t(t) = i (1 - k)m (u*)k(u)t(t) (2) 

U*=l X+ EiP J withk,  / ~ N 

The harmonic oscillator as U(1)-time representation uses a point measure 
for the frequencies as the linear forms on the time translations: 

U(1) ~ [u*, u](t) = e imt 

= I dix ~(IX - m)e i~t 

f IX + m i ~ t  = 1 dix 
_ t_(t)t~r dix ~2 m-----'-~e e 2i'tr ~ ix - m e i~t (3) 

Here mp denotes the principal value integration and ~ the mathematically 
positive circle around all poles in the complex frequency plane Ix ~ R C C. 

The self-dual time representation 4 in SO(2) by position and momen- 
tum reads 

cos mt il 2 sin rot\ 
([iP, X] [X, X] ~. . = [ �9 i 

SO(2) 3 [P, P] [X, - iP] )  tt) ~-~ sin mt cos mt ] 

cos mt~ 
i s inmtJ=fd ix~( ix2-m2)~( ix ) (~m)e '~ t  

= f d i x ~ ( i x 2 - m 2 ) ~ ( m ) ( : ) e  i~t 

_~_(t) I dix ( ~ )  1 dix ( ~ )  
t~r IX2 _ m2e ei~t = --t~ ~ IX2 ~ m 2 ei~t (4) 

In general, a dynamics is not linear, i.e., the Hamiltonian is not quadratic 
in the fundamental operator pairs (X, P), e.g., for the hydrogen atom with 

4The SO(2)-matrices 

cosmt e ~ sin mt I 
-e-~ sin mt cos mt ] 

with e te  C are equivalent to the familiar SO(2)-matrices with ot = 0. 
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the Hamiltonian H = P2/(2M) - g0/[~'l. In those 'truly interacting' cases, 
the operators for the energy eigenstates may be complicated combinations 
of positions X and momenta P. 

1.2. Distributive Quantization of Particle Fields 

The relativistic embedding of  the SO(2) time representations leads to 
two different results: Since the energy is embedded in a Lorentz energy- 
momentum vector tz <-+ (qk)3=o, one obtains both 'scalar and vector cosinus 
and sinus' 

f . {ck(mlx)~ . [ i s ( m l x ) ~  

d ( c o s m t ] :  . risinm,~ JO'tis(mix)}='mtc'(mlx)) 
\ i  sin mt] im t cos mt } "+ l ,  [ C(mlx) ~ . {iS,(mlx)~ (5) 

t ~ = tmt C(mlx) ) 

which both fulfill a homogeneous Klein-Gordon equation 

I {e~(mlx) ] 
d z / ~ / c o s  mt~ (Oz + mz) ~is(mlx)] = 0 

(C(mlx) ~ = 0  (6) -~ + m )t  i sin mt) = 0  "-> / 
+ m 2 ) tiS (mlx): 

The embedding with an ordered Dirac energy-momentum measure at 
q 2 = m 2 for the translation eigenvectors e iqx 

(ck(mlx)~ = /  d4q (qm k) is(mlx)] ~ ~(q2 _ m2)~(qo) eiXq 
(7) 

. xo, f,4q , (rod t-'It (2,it)3 q z _ mZe eixq 

defines the causally supported quantization distributions 

(e(mix)  
is(mlx)] = 0 for spacelike x 2 < 0 (8) 

The embedding with a 'not ordered' measure 

= I d4q " ~(q 2 _ m 2)~(m) e lxq (9) iSk(mlx) ] 

defines the Fock state functions, which have also nontrivial spacelike 
contributions. 
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To illustrate quantum fields with linear equations of motion and particle 
interpretation, following the harmonic oscillator linear quantum structures, 
a free Dirac field ap for particles with mass m :~ 0, e.g., the electron, yields 
a good example: 

i~-~ + m u(t) = 0 '-, (i'ykO k + m)alr(x) = 0 (10) 

Weyl fields arise for m = 0 with a left- or right-handed Weyl representation 
�89 + ~/5)~/k --- Pk = (1, ~)  and�89 - ~/5)~/k ~ Ok = (1, - or), resp., replacing 
the Dirac representation. 

The Feynman propagator is the Fock value (...) of the sum of the 
causally ordered quantization anticommutator and the commutator 

( ~ I t ) ( X )  = / f d4q "ykqkWm 
(2,tr)3 q2 _ m E + io e iqx 

= (--e(x0){~li:, xI~}(x) + [~ ,  xP](x)) ( l l )  

The Fock form function with its spacelike contributions 

( [~ ,  aI~])(x) = Exp(imlx) = C(mlx) + i'ykSk(mlx) 

f d4 q = ~ e(m)(~/kq k q- m)~(q 2 -- mE)e ixq (12) 

will be discussed later (Section 5.3). The distribution for the quantization 
anticommutator 

{~ ,  alr}(x) = exp(imlx) = ~kCk(mlx) + is(mix) 

f d4 q = ~ r g + m)~(q 2 _ _  m 2)e/xq 

_ ~(Xo) f d4q ~ltafl k q- m 
i~ J (2703 25-- -.T e'~q (13) q - mp 

is the interaction relevant structure, which causes the 'divergencies' in relativ- 
istic field theories (not the particle relevant Fock value of the commutator). 
The distinction between exp(imlx) and EXP (imlx) is characteristic for the 
relativistic case with its causal partial order. 

The quantization distribution is given explicitly in timespace coordinates 

m2 m2r176 ~' - ~ d- -~ ~(x2)~2(m2x 2) 
ck(mlx) -- 8~ 2 

s(mlx) ---- ~ mr ~ - ~ ( x 2 ) ~ l ( m 2 x  2) (14) 
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with ek(01X) = [e(Xo)Xk/Ir] ~t(X2). These distributions involve the functions 
%n, in general for n = 0, 1 . . . . .  with I" 2 = ~(x2)m2x 2 ('eigentime' -r), Bessel 
coefficients Jn (Sneddon, 1961), and the beta-function B, 

%,('r z) = n ! -  J , ( ' r )  = n' ~'. (-'rz/4)J - 

" j ~ = o j ! ( j  + n ) !  

~n+l(T 2) = - (n  + I ) -  
C~n('r 2) 
d,rZl4 ' 

dI-L2([t.l,2)-l/2(1 --  l&2) - l / 2 + n  COS ~I,T 

I I B(~, ~- + n) 

~n(0) = 1 (15) 

The vectorial distribution for time x0 = 0 describes the quantization of 
linear fields 

exp(imlx)lxo=O = "/kek(mlx) = ~/0~3(X) 

f d3x ~I~ } (X)lx0=0 ~/0 {~, 
(16) 

The fact that the linear quantization gives no functions, e.g., that exp(iml0) 
does not make sense or that two quantizations cannot be simply multiplied 
for a product representation of the translations, e.g., exp(imlx) exp(imlx) 
arising in a perturbative approach (vacuum polarization in quantum electrody- 
namics) illustrates the familiar divergence problem for linear fields, which 
has to be treated by sophisticated techniques. It hints at the inappropriateness 
of particle fields for more than a perturbative formulation of interactions, 
e.g., their inappropriateness to parametrize a bound-state problem. 

Using a decomposition of all translations into time and space translations, 
e.g., given in a massive particle rest system, the time-ordered integral of the 
spacelike trivial quantization distributions gives--after interchanging time 
and energy integration--the space-dependent interaction functions, e.g., the 
Yukawa interaction and force 

12 f dxo e(Xo)S(mlx) = md(m, I~1) 

f d3 q e-iq'; m 
(27r)3q 2 + m 2 47r1~ 

12 f dx~ e(Xo)~lkck(mlx) = ~aOad(m' 151) 

~- ,  1 + nisei -m~ZJ 
= - ~ / x  -., e 

47rlxl 3 

m 

4,rr I.,7c I e 
-ml~l 

(17) 
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The singularities at ~ = 0 reflect the divergence problems of linear fields, 
if they are used to parametrize interactions. 

Interchanging space and momenta integrations, the space integrals of 
the quantization distributions lead to the time development of the har- 
monic oscillator 

f d3x~kek(mlx)='yocosmxo, f daxs(mlx)=sinmxo (18) 

The distributive quantization of relativistic fields identifies the eigen- 
value of the harmonic oscillator time translation dependence, given by the 
frequency m0, with the characteristic mass for the Yukawa interaction space 
dependence, given by the inverse range mr 

( d2 ) (--0-~-2~m2) d ( m r ' l - ~ l ) ~ ( - ~ ) ( 1 9 )  ~-~+ m 2 cos m 0 t = 0 ,  + = 
\ ~x2 

in the Lorentz-compatible timespace translation dependence 

with mo = mr: (02 + rn2)ek(rnlx) = 0 (20) 

2. CAUSAL TIMESPACES 

Observables; in mechanics depend on time coordinates, relativistic fields 
depend on timespace coordinates. In this section, timespaces are reformulated 
in a general symmetry-oriented algebraic framework starting from complex 
linear operations. 

2.1. Causal Complex Algebras 

Cartan's representation of the timespace translations (real 4-dimensional 
Minkowski vector space) uses hermitian complex 2 • 2 matrices from the 
associative unital algebra of all complex 2 • 2 matrices. Together with the 
time translations (real numbers) of mechanics, they are given as follows: 

- i x2  = x* �9 e(2) x =  x 0 + x 3  xl (21) 
1 + ix2 Xo x3 

Those familiar cases should be used as illustrations for the general case 
working with complex n • n matrices for n --> 1. 

The matrices z �9 C(n) with the usual hermitian conjugation * are an 
involutive algebra, decomposable into two isomorphic real vector spaces of 
dimension n 2. 
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C(n) = R(n) E) iR(n) ~-- R 2"2, z = x + iy 

R(n) = {x E C(n)lx = x*} ----- R "2 (22) 

The  symmetr ic  vector  subspace will be called the m a t r i x  representa t ion  R(n) 
o f  the t imespace  translat ions  with n the rank  o f  t imespace .  

A basis for  C(n) is given by 

[p(n) j, ip(n)j]]2~ 1 with {p(n)J}~2~ 1 = { 1 ~ )  ~ ( n ) a ~  n2-1 

' 2 Ja=l  (23) 

z = ziP(n) j, zAA = zj[p(n)J]AA, A ,  A = 1 . . . . .  n 

using the unit matrix l (n)  and (n z _ 1) general ized hermi t ian  traceless Pauli 
matrices tr(n) a for n --- 2, i.e., three Pauli matr ices  {r for n = 2, eight Gell-  
Mann matrices o" (3) a = )k a for  n = 3, etc.: 

~ ( n )  a = (y(n) a*, t r  i f (n)  a = 0 
[ i~ (n )  a, it~(n) b] = ctabcig(n)C, 
{or(n) a, o'(n) b} = 2~abl (n)  + ~abcff(n)C, 

totally ant isymmetr ic  Ot abc E R 

totally symmetr ic  ~ :  ~ R 
(24) 

The  determinant  defines the abel ian  p ro j ec t i on  of  C(n) to the complex  num- 
bers C(1) = R ~) iR, compat ible  with the unital multiplication and the 
conjugation (a *-monoid morphism)  

f det z o z '  = det z det z '  
det: C(n ) - - - )C ,  z ~ z n = de tz ,  ~ d e t l ( n )  = 1 

[ d e t  z* = d-~-z (25) 

By  polarization, i.e., by combining appropriate ly  (zl -+ z2 - "'" --- z , ) ' ,  one 
obtains a totally symmetr ic  multi l inear form,  famil iar  for  the Minkowski  
translations R(2) as Lorentz bilinear fo rm with indefinite signature 

"q: C(n) • "." X C(n) --~ C 

(zl . . . . .  z,) ~ "q(Zl . . . . .  z,) = cAv"An~AV..A,(Zl~ ~ "'" (Z,)AA~ 

n =  1: " q ( z ) = d e t z = z  (26) 

n = 2: "q(zl, z2) = (zl + z2) 2 - (zl - z2) 2, sign "qln(2) = ( I ,  3) 

The trace part  and the traceless part  o f  a translation will be called a 
t ime translation in T ~- R and a space translation in S(n) ~ R "2- l, 

l (n)  + Xa {~(n) a (27) 
X = x jp(n)  j = X 0 n T 
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However, a decomposition into time and space translations is incompatible 
with the determinant, since for n -> 2 in general det (x + y) 4: det x + det y. 

The involutive algebra C(n) is a C*-algebra (Bratelli and Robinson, 
1979; Richart, 1960) with the norm Ilzll 2 = (z Iz) induced by the scalar product 

z, z' ~ C(n) ~ (zlz') = tr z' ~ z* (28) 

Any C*-algebra is (partially) ordered via the spectrum 

x ~ 0 c = > x = x *  and s p e c x C R  + = {a ~ R l a - - 0 }  (29) 

Therewith, C(n) will be called a causal complex algebra. 
All timespace translations can be diagonalized with a real spectrum 

x ~ R ( n )  ~ s p e c x =  { ~ l d e t ( x - ~ l ( n ) ) = 0 }  C R  

n = 1: x E R(1), s p e c x =  {-r} 

{x0 •  (30) 
n = 2 :  x E R(2), s p e c x =  2 

The n real spectral values {~r}7=l of  a timespace translation x ~ R(n) will 
be called its Cartan coordinates. 

A linear transformation z e C(n) is diagonalizable, z = u o diag (z) ~ 
u - l  if, and only if, it is normal, z ~ z* = z * ~ z. The diagonalization 
transformation is unitary, u-1 = u*. Therewith x ~ R(n) and l E iR(n) are 
diagonalizable, but not any z e C(n). 

The C*-algebra order generalizes the familiar order of the 1- and 4- 
dimensional translations. With one nontrivial positive causal vector c, positi- 
vity is expressable by positive c-projected products (n causal projections) 

c,  x e R(n) ,  c >" 0 

x>~O r . . . . .  x , c  . . . . .  c ) > O  for r = l  . . . . .  n (31) 

r n--r 

The characteristic functions for the causal translations use the spectral 
values 

x ~ R(n), x n = det x = I~ ~- ~r ~ spec x 
r=l 

0(X) = I~I a.~(~r)= I~ "t~(xr), C • 0 (32) 
r=l r=l 

~(x) = O(x)  - O ( - x )  

with the familiar example for Minkowski timespace with a time component 
~(x, c) = xo 



Realizat ions of  Causal  Manifolds by Quantum Fields 2793 

~O(x) = O(Xo + I~l)O(x0 - 151) = O(x0)O(x 2) (33) 
n -- 2: L~(x ) = ~(x0)O(x2) 

The vector space of  all timespace translations R(n) is the union o f  the positive 
and the negative causal cone and the spacelike submanifold 

R ( n )  = R(n)causa I U R(n)space , R(n)causa I I") R(n)space = {0} 

R(n)causal + + = R(n)causal U R(n)~ausal, CI = R(n)causal R(n)~ausal {0} (34) 
+ 

R ( n ) c a u s a  I = {X E R(n)lspec x C R + } = -R(n)causat 

All translations can be written as sum of  a positive and a negative time- 
like translation 

R(n) = {x+ + x_lx+, - x _  E R(n)~mel (35) 

The positive causal cone is the disjoint union 

+ + + 
R(n)causa I {0} to = R(n)t ime to R(n)l ight  (36) 

of  the trivial translation (tip of  the cone), the strictly positive timelike transla- 
tions (interior of  the cone) where the spectrum does not contain 0 

+ R(n)Lusal[0 a spec x} (37) R(n)t im e = {x E 

and the strictly positive lightlike translations (skin of  the tipless cone) where 
0 is a spectral value 

R(n) t ight+  = {X E R(n)~udX ~ 0, 0 E spec x} (38) 

For  the 1-dimensional totally ordered translations R(1) = R, one has a trivial 
space R(1)sp~ = {0}. The nontrivial spacelike manifold for n -> 2 is the 
disjoint union of  (n - 1) submanifolds R(m, n - m)space with m strictly 
positive and n - m strictly negative Cartan coordinates 

n-1  
n ----- 2: R(n)space \ {0} = tO R(m, n -- m)space (39) 

m=l 

In the 1-dimensional case there is no light, R(1)ffght = 0. Light is a genuine 
nonabelian phenomenon,  arising for n -> 2. There, the strictly positive (nega- 
tive) lightlike manifold is the disjoint union of  (n - 1) submanifolds 
R(m, n - 1 - m)ffght with exactly m trivial and n - l - m strictly positive 
(negative) Caftan coordinates 

n--1 
n ~ 2 :  R(n)l~ght = tO R(m, n -- 1 - m ) ~ g h t  (40) 

m=l 
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The proper time ('eigentime ') projection is the causal projection of the transla- 
tions to the real numbers R(I) = R, 

de tx  ~ = ~'r for n =  1 
"r: R(n) ---> R, "r(x) = r /~(Xo)a~(x2)v/~ for 2 n 

% 

(41) 

In general for n --> 2, it is not linear, a" (x + y) :/: "r(x) + "r (y). 

2.2. Timespace Manifolds 

The complex algebra C(n) with the commutator as Lie bracket is, on 
the one hand, as complex n 2-dimensional space, the rank n Lie algebra s of 
the complex Lie group GL(C n) C C(n), and, on the other hand, as real 2n 2 
dimensional space, the rank 2n Lie algebra of the real group 6 GL(CD. The 
antisymmetric space iR(n) in C(n) is the rank n Lie algebra of the unitary 
group U(n): 

C(n) = log GL(C"), 

R(n) E) i R(n) = log GL(C~ ,  

iR(n) = log U(n), 

GL(C") = exp C(n) 

G L ( C ~  = exp[R(n) ~ iR(n)] 

U(n) = exp iR(n) 

(42) 

The vector space of the timespace translations R(n) is isomorphic to the 
quotient of the full with respect to the unitary Lie algebra. Its exponent is 
isomorphic to the corresponding homogeneous space, the real n 2-dimensional 
manifold with the orbits gU(n) of the unitary group U(n) in the full group 
G L ( C ~  

R(n) -~ log GL(C~.)/log U(n), D(n) = exp R(n) ~- GL(C~/U(n) (43) 

The 'compact in complex manifold' D(n) will be called a timespace manifold; 
it is isomorphic to the strictly positive timelike translations 

+ 
D(n) = {d = e e*le ~ GL(C~}  ~- R(n)tim e (44) 

i.e., the timespace manifold D(n) can be embedded into its tangent space 
R(n) where light and space translations arise as genuine tangent phenomena. 

Timespace D(n) is totally semiordered _ (transitive and reflexive) via 
the abelian projection onto the totally ordered group D(1), 

det: D(n) ----> D(1), d ~ det d 
(45) 

dl.2 ~ D(n): dl r- d2 ~ det dl --< det d2 

5The Lie algebra of the Lie group G is denoted by log G. 
6CR denotes the real 2-dimensional structure R ~) iR of the complex numbers C. 
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Therewith, D(n) will be also called a causal manifold (Hilgert and Olafsson, 
1997). The set of all semiorder induced equivalence classes is isomorphic to 
the causal group D(1) and carries a total order. 

Also the name modulus manifold is justified for D(n) since it parametrizes 
the possible scalar products of the complex space C n with basis {eA},~=l 
where the C*-algebra C(n) is acting on 

(e llel) 
. o .  

D(n) e e* \ (enle ) 

0 1 0  

0 0 0  

~ 1 7 6 1 7 6  

<eile"> / 
(enlen)] 

(46) 

The real Lie groups 7 for the timespace manifold involve as factors the 
causal group D(1) (direct factor, denoted by • the phase group U(1), and 
the special groups SL(CD and SU(n), respectively. They will be called 

external group: GL(CD = GL(CR) o SL(CD 

internal group: U(n) = U(ln) ~ SU(n) (47) 
timespace manifold: GL(C~J/U(n) -- D(1) • SD(n) 

The second direct factor SD(n) = SL(C[)/SU(n) in the manifold will be 
called the Sylvester or boost submanifold. It is trivial only for the abelian 
case n = 1. 

The groups G L ( C ~  (external) and U(n) (internal) have with the cyclo- 
tomic group In = {a ~ CI~ n = 1 } the centers, phase correlation groups, and 
adjoint groups s 

centr GL(C[ )  ~ GL(CD centr U(n) ~- U(I) 

GL(CR) fq S L ( C ~  -- In, U(ln) N SU(n) __m- In (48) 

Ad GL(CD ----- SL(C[)/In, Ad G L ( C ~  ~- SU(n)/In 

As a homogeneous space, a timespace manifold has a nontrivial external 
action [from left on gU(n) ~ D(n)] with the causal group and the adjoint 
external group 

external action on D(n) with D(1) • SL(CD/I n (49) 

and a trivial action (from right) with the internal group (therefore the 
name 'internal'). 

7U(ln) -~ U(I) and D(I~)----- D(I) denote the scalar phase and causal (dilatation) group in 
GL(CD. Here l(n) is the unit of the C"-automorphism groups. 

SThe adjoint group of a group is defined as the classes up to the center Ad G = G/centr G. 



2796 Sailer 

There is another, more familiar chain of  causal timespace manifolds, 
characterized by the orthogonal real structures 

s = 0: D(1), s -> 1: D(1) • SO+(1, s) /SO(s)  (50) 

with s - 0 space dimensions. This chain meets the GL(C[) /U(n)  chain only 
for the two timespace dimensions n 2 = 1 + s = 1, 4. Obviously, the 
orthogonal structures involve an invariant bilinear form for all dimensions. 

For n = 2 one has the isomorphy with the orthochronous Lorentz group 
SO§ and the rotation group SO(3): 

GL(CZR)/GL(CR) --- SL(C2)/I2 -~ SO+(1, 3) 

U(2)/U(I) ~ SU(2)/I2 ~ SO(3) 

D(2) = GL(C~/U(2)  ~ D(1) • SO+(1, 3)/SO(3) 

(51) 

If one visualizes the real 4-dimensional timespace manifold D(2) embedded 
as the strict future cone R(2)ffme in the Minkowski translations R(2), this cone 
has to be foliated 9 with the hyperboloids SO§ 3)/SO(3) (hyperbolic folia- 
tion). The causal group D(1) action on the manifold connects different hyper- 
boloids by 'hyperbolic hopping,' whereas the orthochronous group SO+(I, 1) 
action on the individual hyperboloids can be described as 'hyperbolic stretch- 
ing'. The Minkowski translations R(2) as tangent structure of the timespace 
manifold D(2) can be visualized with a 3-dimensional tangent plane of a 
timelike hyperboloid SO§ 3)/SO(3) and the tangent line of 'blowing up' 
or 'shrinking' this hyperboloid with D(I). The causal order is the 'foliation 
order'  of  the positive timelike hyperboloids. 

2.3. The Rank of Timespace 

A timespace translation is diagonalizable with a unitary matrix 

x = x* ~ R(n): x = u(x) o diag(x) o u (x)* (52) 

The relativistic case n = 2 uses, in addition to two Caftan coordinates, two 
polar coordinates (q~, 0) from the unit sphere SO(3)/SO(2) 

9Take the 3-dimensional projection with hyperboloids SO § (1, 2)/SO(2) with the 2-dimensional 
tangent planes. 
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Xo + I-~1 ) 
1 (x:O+X3 xl - ix21 = u(x) 2 0 

n = 2: ~ i + ix2 Xo x31 0 X o -  151 u(x )*  (53) 

{0 o) 
cos ~ - e  i~ sin /cos  ~p sin 0 \  

U ( X )  = | itp �9 0 0 for ~ = I~1{ sin q~ sin 0 ] 
\ e  s ln~  c o s ~  \ cosO / 

Timespace translations and timespace manifold are isomorphic as real 
manifolds 

exp: R(n)---) D(n), x ~ e x 

log: D(n) --~ R(n), d ~ log d (54) 

using the exponentation and logarithm of the diagonal matrices 

x = u(x) o diag(x) o u ( x ) *  ~ e x = u ( x )  o e diag~x) o u ( x ) *  

d = u(d) o diag(d) o u(d)* ~ logd = u(d) o log diag(d) o u ( d ) *  (55) 

e.g., for n = 2, 

n = 2: e fx01(2)+~'l/2 = e ~2 1(2)cosh + 151 sinh 

|,/c~ 151 4- cos 0 sinh 151 ~i'P 1~1 _~) 2 -~- e -  sin 0 sinh ~ -  
= e xo/2/ ..., 

Ixl . . . 
e i, sin 0 sinh Ix/ cosh - cos t~ stun 

2 

0 , (56) 

For n = 1, one has an isomorphy for the abelian groups D(1) = e R ~ R. 
In the general case, the diagonal matrix for a timespace point contains 

the n strictly positive spectral values 

i e ~12 . .. 
d E D(n): diag(d) = . . . . . .  x0 : ~r (57) 

n r=l 
\ 0 ... 
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which realize n times the abelian causal group D(1). In a nontrivial boost 
submanifold SD(n), the group D(1) comes in the self-dual decomposable 
representation ('Prokrustes representation'), isomorphic to the orthochronous 
group SO+(1, 1) 

D(1) ~- SO+(1, 1) ~ d(~) = 

(d2) - ~  + 1 d(~) = 0 

(cosh ~ sinh ~ /  

sinh~ cosh~J  ~(eO2 e0~2) (58) 

The unitary diagonalization transformation is determined up to the diago- 
nal phases 

u(d), u ( x )  ~ SU(n)/U(1) n-l (59) 

Therewith, timespace is isomorphic--as manifold--to a product of non- 
compact causal groups (Cartan subgroup) and a compact manifold 

GL(C[)/U(n) = D(n) -~ D(1) n • SU(n)]U(I) n-l 

SL(C~)/SU(n) = SD(n) ~- D(1) ~-I • SU(n)/U(1) n-1 (60) 

and for the timespace translations 

log GL(C~/Iog U(n) ~ R(n) ~ R n • SU(n)/U(1) ~-Z (61) 

The abelian group D(1)n and its Lie algebra R n constitute the Cartan skeleton of 
the timespace manifold D(n) and the timespace translations R(n), respectively. 

The ranks (Helgason, 1978) n and n - 1 of the homogeneous manifold 
D(n) and SD(n), respectively, have to be seen in analogy to the rank of a 
Lie algebra or its Lie group, e.g., ranks n and n - 1 for U(n) and SU(n), 
respectively, with the manifold factorizations 

U(n) ~ U(1) ~ • SU(n)/U(1) ~-l 

SU(n) ~ U (1)n - t • SU(n)/U(1 )n - l (62) 

2.4. Tangent Structure and Poincar6 Group 

A timespace D(n) and R(n) analysis is interpreted and performed with 
the linear forms (dual space l~ R(n) r of the timespace translations containing 

~~ denotes the dual vector space (linear forms) for a vector space V with the bilinear dual 
product V r x V - o  C, (to, v) = oa(v). 



Realizations of Causal Manifolds by Quantum Fields 2799 

the weights (collection of eigenvalues). The linear forms will be called the 
f r e q u e n c y  (energy)  space for n = 1 and the e n e r g y - m o m e n t a  space for n ----- 
2. In the representation by the matrix algebra C(n) the 'double trace with 
one open slot' describes an isomorphism between translations and energy- 
momenta. 

R(n) ---> R(n) r, q ~ c~ = tr q . . . .  (63) 

dual product: R(n) r • R(n) --~ R, (~, x) = tr q o x 

With generalized Pauli matrices one has a dual bases 

R(n)-translations basis: {p(n)J}~o 1 =  { l ~ )  o'(ny'~ "2-1 
' 2 J~=l 

R(n)r-energy-momenta basis: { ~(n)j}~2~ 1 = { l (n ) ,  •n)a}a=l n 2 - 1  (64) 

dual bases: tr p(n) j o ~(n)k = 8~ 

The Cartan coordinates { ~r}r~= ~ for the translations have their correspon- 
dence in Cartan  masses  { iXr}r ~- ~ for the energy-momenta, positive for positive 
energy-momenta 

~  

q ~ R(n)r: q = u(q) . . . . .  Ix2 "'" u(q)* (65) 

~  

q ~ 0 r all I~r ~" 0 

The external group GL(CD action on the causal manifold D(n) induces 
a faithful action of the adjoint external group Ad GL(C~) ~- SL(C~/In on 
the tangent structures. This defines the Poincard  group  as semidirect product 
(symbol • of the adjoint external group and the additive vector space groups 

fAd.s :  R(n) ---) R(n), Ad.s(x) = s o x o s* 
s ~ SL(C~:  ~Ad,g: R(n) r--->R(n) r, Ad,s(q) = g o q o s ,  (66) 

L with g = s- l*  

POIN(n) = SL(C~/I ,  • R(n) 

In contrast to the direct product structure D(1) X SD(n) of the causal 
manifold, a decomposition of the timespace translations into time translations 
T and space translations S (n - 1) or of the dual space into energy and 
momenta is incompatible with the action of SL(C~)/I~ for n >- 2, it is only 
compatible with the action of the adjoint compact subgroup SU(n)/In. 
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Two remarks are in order: In general, the adjoint action of a Lie group 
G on its Lie algebra log G can be characterized by l ~ Adg(l)  = glg -1 
leading to the semidirect product Ad G Xs T(G).  The abelian normal subgroup 
T(G) is the vector space structure of the Lie algebra log G = T(G), i.e., 
a nonabelian Lie bracket has to be 'forgotten' (Bourbaki, 1989) for the 
translations T ( G). 

In the case of a group with conjugation *, the involution g --> ~ = g - 1 ,  
is a group automorphism with the *-unitary group U(G,*) = {u ~ Glu* = 
u- l}  as invariants. Correspondingly, the Lie algebra log G of a complex 
finite-dimensional Lie group with conjugation * is the direct sum of the 
isomorphic antisymmetric and symmetric real vector spaces log G_+ with 
l~_ = _+_l• Here log G_ is the real Lie algebra of the unitary group U(G, *). 
In order to be compatible with the conjugation g ,-, g* and I ~ 1", the adjoint 
action has to be modified to I ~ Ad,g (l) = gig*. For the *-unitary subgroup 
U(G, *), one has Ad u = Ad,u. Both subspaces log G+ remain stable. The 
emerging semidirect adjoint group is Ad,G xs  log G+ with the additive group 
structure of the vector space log G+ ~ log G/log U(G, *). For all adjoint 
actions, the abelian center of the group is represented in the semidirect product 
via the additive structure of the translation factor. 

For time alone, n = 1, the Poincar6 group is the additive structure of 
the time translations 

POIN(I)  = R(1) = log D(1) (67) 

In the familiar relativistic case, n = 2, with 

POIN(2) ~ SO+(1, 3) • R(2) 
(68) 

R(2) ~-- log D(I)  �9 log SO+(1, 3)/log SO(3) 

the Minkowski time-, light-, and spacelike translations are isomorphic to 
homogeneous manifolds with characteristic fixgroups ('little' groups) for 
the translations 

R(2)t~me = D(I) X SO+(1, 3)/SO(3) = GL(C~FLI(2) 

R(2)ff-ght ~ SO+(1, 3)/SO(2) • R z ------- SL(C~/U(1)  • C R 

R(2)space\{0} = D(1) • SO+(1, 3)/SO+(1, 2) = GL(C~/U(1 ,  1) 
(69) 

The semidirect product SO(2) x~ R 2 fixgroup of the lightlike translations is 
the Euclidean group) l 

UFor the Poincar6 group SO § (1, s) • R TM with s --> 1 space dimensions the corresponding 
fixgroups are SO(s) (timelike), SO(s - 1) X s R s-t (lightlike), and SO+(I, s - 1) (spacelike). 
The lightlike translations fixgroup for s = 1 is trivial { 1 }. 
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For the case n --> 2, the disjoint decompositions of the spacelike and 
timelike manifolds into (n - 1) submanifolds (Section 2.1) reflect different 
unitary fixgroups 

f R ( m , n  - m)spa~e ~-- GL(C~/U(m, n - 1 )  
n --> 2: JR(m, n - 1 - m)ffght ~ SL(CR)/U(m, n - m) X~ C~ -I 

L m = l  . . . . .  n - 1  
(70) 

The fixgroup U(n) for the action of the external group SL(C[)/I. on the 
strictly positive translations R(n)t~me should not be confused with the internal 
group U(n) which acts trivially (from the right) on timespace GL(C[)/U(n). 
A group G acting from the left on the subgroup classes gU ~ GIU has an 
U-isomorphic fixgroup for any point gU. 

3. REPRESENTATIONS F O R TIMESPACE 

The solution for an experimentally oriented formulation of a timespace 
dynamics requires an analysis, e.g., of a symmetry invariant, with respect to 
the operations used in the definition of a timespace manifold D(n) = 
GL(C[)/U(n). Starting from a purely algebraic framework, one can even say 
that an analysis with respect to time or timespace representations introduces 
the time or the timespace dependence of quantum mechanical operators (von 
Weizs~icker, 1993) or relativistic fields. 

For a solution of a dynamics, the involved nondecomposable representa- 
tions of the external-internal real Lie group 

GL(CD X U(n) (71) 

have to be determined. The eigenvalue and eigenvector problems to be solved 
in a quantum structure is classically expressed by equations of motion. The 
eigenvalues (weights) for the action of a real Lie group are linear forms of 
the Cartan subalgebra and, therefore, have to be real. All weights (collection 
of eigenvalues) form a subgroup, discrete or continuous, in the additive group 
of the linear forms on the Lie algebra of the external-internal group. 

The theorem that two diagonalizable finite-dimensional endomorphisms 
f, g are simultaneously diagonalizable, i.e., have a common eigenvector basis, 
if, and only if, they commute with each other [f, g] = 0, is the mathematical 
formalization of a central quantum operational structure. However, operators 
cannot be identified with states, mathematically: In general, endomorphisms 
f o f  a complex finite-dimensional space allow only a Jordan triangularization, 
i.e., no eigenvector basis. In general, the nondecomposable representation 
spaces of the external-internal group can be spanned by principal vectors. 
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Irreducible representations are a special case; their vector spaces can be 
spanned even by eigenvectors (diagonaiization in the semisimple case). 

For n = 1 with time as the causal group D(1), one has a dynamics for 
mass points (mechanics) where a Hamiltonian H representing-or defining-- 
the time translations R(1) as generator of the causal group is analyzed with 
respect to the involved representations of time D(1), illustrated by the equation 
of motion daldt = [ill, a] for a quantum operator a, e.g., position X or 
momentum P. For example, the Hamiltonian for the N-dimensional isotropic 
harmonic oscillator H = (p2 + X2)12 as SU(N)-invariant or the hydrogen 
Hamiltonian H = p2/2 - 1/X as an invariant of the group SU(2)• SU(2)/ 
I2 ~ SO(4) (elliptic bound states) or SL(C2)/I2 ~- SO+(l, 3) (hyperbolic 
scattering states), both subsymmetries of SU(2, 2)/I 2 ----- SO(2, 4). The time 
dependence of quantum operators can be introduced (defined), e.g., by a (t) 
= e iHtae-iHt. 

For relativistic fields, n = 2, with the homogeneous timespace D(2) = 
GL(C~AJ(2) and the tangent Minkowski translations R(2), a dynamics ana- 
lyzes an interaction with respect to the external-internal group, e.g., the 
analysis of invariant gauge vertices like air ~/k Ak air with fermion and gauge 
degrees of freedom qr and A, respectively in the standard model of elementary 
particles. Involving both noncompact and nonabelian structures, this much 
more complicated analysis works with representations of the external non- 
compact causality D(1) and Lorentz SL(C~) properties as well as internal 
compact hypercharge U(1) and isospin SU(2) properties, as expressed by 
field equations, e.g., ~lk oalrlOXk = i ~  (qr) = i~lk A k q  r. 

3.1. Representations of the Causal Group 

Any dynamics requires a causal analysis with respect to the group D(1) 
= {e'l'r E R}. 

All D(1) representations (Boemer, 1955; Sailer, 1989) can be built from 
nondecomposable representations. The finite-dimensional, nondecomposable, 
unitary complex representations e ~ ~ (NIm)('r) of the real Lie group D(1) 
are characterized by positive integers N ~ N for the dimension 1 + N of 
the representation space and a real number m--a frequency (energy) for time 
and a mass for timespace--from the dual group, the linear frequency (mass) 
space log D(I) r ~ R. They involve a power 1 + N nilpotent part AN (nil- 
Hamiltonian) nontrivial for N ~ 0, 

D(1) 3 e r ~ (NIm)(a') = eiAN'~eimr with IN 
= 0, 1,2, 

(AN) N 4= 0, N'v~ 0 
( A N )  I + N  = 0 

(72) 

(NIm)(x) = eANdldme imT, tr(NIm)(x) = (1 + N)e im~ 
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The following explicit examples with nilcyclic matrices As illustrate the 
abstract structure: 

(01m)('r) = e im.r 

(llm)(,r) ~ (1 ih'r~l) eim* = ( 1  hd/dm)eim ~ 

(iX'r) 2/2! ~ 
(21m)('r) ~-- 1 i "r e ira+ = 1 

0 0 

0 

(73) 

(h2/2!) d2/dm2~ 
hd/dm )eim" 

To take care of the real structure of the causal group D(1), a complex 
D(1)-representation has to be a 1-dimensional subgroup of a unitary group. 
Therewith the constant m has to be real in nondecomposable representations. 
The D(1)-images for the 1-dimensional representations (01m) for m :~ 0 
(harmonic oscillator) are isomorphic to U(1). The representations (1 Im) (e.g., 
a free mass point for m = 0) have real 1-dimensional faithful images in the 
indefinite unitary group U(1, 1), (21m) in U(2, 1), (31m) in U(2, 2), etc. We have 

1, N = 0 , 2  . . . .  (74) (NIm) inU(N+,N_) with N+ - N_ 0, N 1, 3, 

In addition to the discrete dimension 1 + N, the nondecomposable causal 
representations involve two continuous constants, m and h: Only the frequency 
(mass) m is an invariant of the causal group D(1). It is the causal unit of the 
representation. The matrix form of the nilpotent AN and the real constant ~2 
h ~ 0 are determined up to equivalence gANg- t. 

Representations with opposite frequency (mass) (NI +__ m) are dual to 
each other and nonequivalent for m 2 > 0. The self-dual, m2-dependent 
formulation contains two dual representations, e.g., in SO(2) for N = 0 

(01m)('r) ~) (0t - m)('r) 

= (011m2)('r)~ ( e o  eO'~) ~-(\imc~ m'c (ilm) sinmXlcos m'r ] (75) 

12E.g., for N = 1 with At = h(o ~ o I) the constant h is transformed with g = (~ o_~) to h ,-. 
e2"h. A similar structure (Becchi et al, 1976; Saller, 1991) is used for the 'gauge-fixing 
constant' in quantum gauge theories. The gauge-fixing constant has to be nontrivial--its 
value is physically irrelevant. The gauge structure in the BRS formulation is nilpotent. 
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Only the positive unitary 1-dimensional representations (01m) are irre- 
ducible; they are unfaithful--the U(1)-represented time is periodic. The indef- 
inite unitary faithful representations (NIm) for N --> 1 are reducible, but 
nondecomposable. The lowest dimensional faithful D(1) representations (llm) 
will be called fundamental. 

The pairs (NIm) with a positive integer (dimension) and a real number 
(causal unit) form the abelian representation monoid o f  the causal group for 
all equivalence classes of nondecomposable causal representations 

mon D(1) = {(NIm)IN = O, 1 . . . . .  m ~ R} --~ N X R 

(Nllm0 + (N21m2) = (Nl + N21mi + m2) (76) 

neutral element: (010) 

The weight group of D(I) is the regular subgroup of the representation 
monoid, it characterizes the irreducible representations of the causal group 
and is the dual space log D(1) r of the causal translations log D(1) 

grp D(1) = {(01m)lm E R} ~ R 

mon D(I) D grp D(1) (77) 

The U(1)-weights (oriented winding numbers) for the compact quotient 
group U(1) ~ D(1)/e z form a discrete subgroup, the representation group 
for  U(1) 

grp U(1) = {(01Z)IZ ~ Z} = Z (78) 

3.2. Representations of  GL(Ca) 

All irreducible complex representation of the real abelian Lie group 
GL(CR) = D(1) X U(1) are 1-dimensional and characterized by an integer 
winding number [U(1)- weight] and a complex number 

# GL(C~) ~ ~ = e "r+ia ~ I~1 im = ~( im+z)12g ( im- z )12  = eim'reZia 

(79) 

(m; Z) ~ C X Z 

Complex representations of real groups have to be unitary. Unitary 
irreducible D(1)-representations are necessarily positive unitary. All unitary 
irreducible representations have a real causal unit m [D(1)-weight] 

grp GL(CR) = grp D(1) • grp U(1) = {(m; Z)} ~- R X Z (80) 

As seen in the previous subsection, the group of the GL(ClO-weights is the 
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regular group of the GL(CR)-representation monoid for all equivalence classes 
of the unitary nondecomposable representations 

mon GL(CR) = mon D(1) X grp U(I) = {(NIm; Z)} 

-- N X R X Z (81) 

mon GL(Cv.) D grp GL(CR) 

3.3. Fini te-Dimensional  Representat ions  o f  SL(C[)  

All complex representations of the compact real (n 2 _ 1)-dimensional 
Lie group SU(n), n -> 2, are decomposable into irreducible ones which have 
finite dimensions. The irreducible SU(n)-representations are characterized-- 
according to rank (n - 1) and Cartan subgroup U(1)"- l - -by (n - 1) positive 
integers with the additive SU(n)-representation monoid for the equivalence 
classes 

mon SU(n) = {[2J1 . . . . .  2J,_l]12Jk = 0, 1 . . . .  } ~ N "-I (82) 

The positive integers reflect the N-linear combination of the (n - 1)funda- 
mental representations [1, 0 . . . . .  0] . . . . .  [0 . . . . .  0, 1], e.g., the Pauli spinor 
representation [1] for SU(2) or the quark and antiquark representations 
[ 1, 0] and [0, 1 ] for SU(3). The adjoint representation [ 1,0 . . . . .  0, 1 ] is faithful 
only for the adjoint group SU(n)/I,, e.g., the adjoint SU(2)-representation [2] 
for SO(3) or the SU(3)-octet representation [1, 1] for SU(3)/I 3. 

The SU(n)-representation monoid is the positive cone (dominant 
weights) in all SU(n)-weights which constitute a discrete subgroup in the 
linear forms log SU(n) r of the Lie algebra 

grp SU(n) = {[2j~ . . . . .  2j,_lll2jk ~ Z} 

= grp U(1) "-t  ~ 2 "-1 (83) 

mon SU(n) C grp SU(n) 

{2jrJr: 1 c a n  be related to the winding numbers of the Cartan The integers �9 ,-1 
U(1)'s involved. Since SU(n) are simple groups, they come in self-dual SO(2) 
representations. Especially for SU(2) the half-integers (J, j) E N/2 X Z/2 
are called spin and its third component. 

The defining representation with a complex n-dimensional representation 
space can be written with the generalized Pauli (Section 2.1) matrices 

[1, 0 . . . . .  0](~) ~ e ~.i~(")a/2 (84) 
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where the Cartan subgroup U(1) n-1 is represented with the (n - 1) diago- 
nal matrices 

~ itr(n)k2-1 } 
U(1) "-I = exp ak2-1 - -  ICtk2-1 ~ R (85) 

k=2 2 

Taking together the diagonals of the (n - 1) matrices {~-o'(n) k2-1 }~=2, one 
obtains the n weights { wr}7= l of the defining SU(n)-representation in the real 
(n - 1)-dimensional weight space. In the normalization 13 with the Paul~ 
matrices, the defining weights occupy the comers of  a regular fundamental 
simplex, centered at the origin, as expressed by the [(n - 1) • n]-matrix 

weights [1, 0 . . . .  ,0 ]  ~ simplex (n) 

1 

- 1  

WI 
W2 
W3 0 

= W4 1 
. ~  - ~ -  " ~  

. ~  

Wn 0 

0 

~ Wr=O 
r=l 

Ilwk - will : ski 

Ilwkll = ./n- 1 
Tn u 

1 1 

1 1 

2 1 

0 
3 

~ 1 7 6 1 7 6  

~ 1 7 6 1 7 6  o ~  

~ 1 7 6 1 7 6  ~ 1 7 6 1 7 6  

0 0 . . .  

1 

1 

1 

1 

~ 1 7 6  

~ 1 7 6 1 7 6  

n - - 1  

(86) 

laThe integer winding number normalization arises with the basis { v/~(r(n) : - l  }~=2. 
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All complexf ini te-dimensional  irreducible representations of the simple 
Lie group SL(C~), n - 2, are characterized---according to the Cartan subgroup 
GL(C10n-l--by 2(n - 1) positive integers, interpretable as (n - 1) left' 
and (n - 1) 'right' winding numbers 

• = {[2LI . . . . .  2Ln-II2Rn-,  . . . . .  2RI]I2Lk, 2Rk e N} 

= m o n  SU(n) • mon SU(n) w_ N n-l • N n-I (87) 

reflecting the N-linear combinations from 2(n - 1)fundamental representa- 
tions (one 1, elsewhere 0). Also, the weight group is the 'square' of  the 
weight group for the unitary subgroup 

•  = {[211 . . . . .  2l~-ll2r~-i . . . . .  2rl]121k, 2r k E Z} 

= grp SU(n) • grp SU(n) - Z ~-1 • Z ~-l (88) 

• monfinSL(C~) C • grfinSL(C~) 

The finite-dimensional irreducible SL(CD-representations are not necessarily 
unitary. However, the monoid and the group allow a conjugation 

[2L1 . . . . .  2L~_ll2R~_l . . . . .  2Rl] • = [2R1 . . . . .  2R~-l12L~-I . . . . .  2L1] 

[211 . . . . .  21n-,12r~-i . . . . .  2r,] • = [2r, . . . . .  2r~-ll2l~-i . . . . .  2l,] (89) 

The equivalence classes with respect to this conjugation characterize the 
equivalence classes of the finite-dimensional irreducible representations of 
the complex group SL(Cn). 

The conjugated pair of the two defining finite-dimensional SL(C~-  
representations uses the Pauli matrices, e.g., for n = 2 the left- and right- 
handed Wely representations [110] and [011] 

[1 ,  0 . . . . .  010 . . . . .  0 ,  0](X,  Or) ~--- e (xa+i~ 

[0, 0 . . . . .  010 . . . . .  0, 1](x, ix) --  e--<Xa+i'~a)"<~)a/2 (90)  

These representations are not unitary, they are equivalent for the complex 
group SL(Cn). 

Only the self-conjugated irreducible representations are also unitary 
(indefinite unitary). They define the representation monoid and weight group 
for the adjoint group SL(CD/I~: 

mon SL(C[)/I~ = {[2Jl . . . . .  2Jn-ll2J~-i . . . . .  2Jl]12Jk ~ N} 

--~ N n - l  (91) 

grp SL(CD/I~ --- Z n- l 

with the (n - 1) fundamental  representations [1, 0 . . . . .  010 . . . . .  0, 1], etc. 
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The conjugation-compatible analogue to the real (n 2 - 1)-dimensional adjoint 
representation for SU(n) is the irreducible unitary representation of SL(C~ 
on a real n 2-dimensional space, e.g., on the timespace translations R(n) ~- 
log GL(C~/Iog U(n), faithful for SL(C~)fIn, i.e., in the case n = 2 for the 
Lorentz group [SO + (1,3)] 

• representation: [,1, 0 . . . . .  010 . . . . .  0, 1] 

n = 2: [111] (92) 

The n2-dimensional indefinite unitary irreducible SL(C~-representation is 
called the defining representation of the adjoint group SL(CD/In, e.g., the 
Minkowski representation of SO + (1,3) on R(2). 

Any representation of SL(C[) is a representation for SU(n)---in general 
decomposable--and gives--by the quotient of the represented groups--a 
realization of the Sylvestermanifold SD(n) = SL(C~/SU(n), e.g., for n = 
2 with the Pauli matrices ~r and the Lorentz boost matrices B 

[llO](x) = e ~/2, [OI1](x) = e -;~/2 

0 x I x2 x3 

~- ,  xl 0 0 0 
[ l l l ] ( x ) = e  ;g, x B  = x2 0 0 0 

x3 0 0 0 

(93) 

3.4. Irreducible Representations of SL(C~) 

As shown by Gel'fand and Neumark (1957; Gel'fand et al., 1966; 
Neumark, 1963), all irreducible SL(C~-representations can be characterized 
by the irreducible representations of the Cartan subgroup GL(CR) n-l. 

To illustrate the case n = 2: The representation spaces of 

are subspaces of the complex vector space C 2 = {f." C 2 --~ C} with the 
complex-valued mappings on the vector space C 2. The SL(C~)-action is 
induced by the defining representation on C 2 

x 
C 2 > C 2 

f , [  ~, x f ,  xf(zl, Z2) = f ( ~ . - I  �9 (Zl, z2)) (95)  

C > C 
id 0 

•-1 . (Zl, Z2) = (Zl, Z2)X "~- (Zl, Z2) ,~ 

x'oxf = x'(xf) 
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The irreducible SL(C2)-representations use the irreducible representa- 
tions of its Cartan subgroup GL(C10 on the subspace of  the mappings which 
are (vl - llv2 - 1) homogeneous with respect to a 'relative' GL(CR) for 
the two components zl,2 

C~a~,~2) = { f  ~ C'321f(Szl, ~Z2) = ~vl-l~v2-1f(Zl, Z2)for ~ ~ C} 

f im + Z im - Z 
with {vl  . . . .  ~ - - ,  v2 = - -~" - (96) 

[ (m;  Z) = ( - i ( v  I + 1)2); 1)1 - 1'2) E C X Z 

Those functions involve an integer winding number ___Z (spin Z/2)  for the 
'relative' phase group U(1) C SU(2) and a complex number m for 
the 'relative' causal group D(I)  C SD(2) = SL(C~/SU(2).  Since the 
(vl - 1 Iv2 - 1) homogeneous mappings have the orbit properties 

ZvI--lzV2--I ic[Zl ) 
f ( z b  Z2) = 2 2 J~Z2' 1 (97) 

the group S L(C ~  acts on the corresponding vector space 

F(~) = f(~, 1) E C a = {F: C ---> C} (98) 

in the following form: 

h ,-. D(m;Z)(h), 

~F(~) F ~lif3~ 
= (p~ o /  

F ,..-, D(m"Z)(h)(F) = xF 

�9 [f~ + ~z,2 
+ ~ 1 " ' / - - /  

\13~ + ~,/ 

+ 8),,,-~(13~ + ~)~2-~ 

(99) 

The pairs (m;Z) ~ C • Z characterize all irreducible complex representa- 
tions of  SL(C2), not necessarily unitary. The finite-dimensional irreducible 
SL(C~-representations of the previous subsection arise with an integer imagi- 
nary 'causal number' m 

(m;Z)  ~ iZ X Z 

• grpfi,SL(C~) = {[vii - v2] = [2ll2r]} 

= grp SU(2) • grp SU(2) = Z • Z (loo) 
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As to be expected from the abelian group GL(CR), the unitary principal 
irreducible SL(C2R)-representations are characterized by a real causal unit 
m (mass) 

grppn,cSL(C 2) = {(m; Z)} 

= grp GL(CR) -~ R X Z (101) 

which reflects the U(2)-unitary representations (conjugation *) of the Car- 
tan subgroup 

e (x3+ict3)~3/2 ~ u ~ e (imx3+iz~ 

-1 (102) 
(m;Z) �9 R X  Z ~ u *  = u �9 U(1)3CSU(2)  

The unitary representations with trivial causal unit m = 0 are the finite- 
dimensional self-conjugated representations of the previous subsection 

(0; 4J )  ~ [2JI2J] (103) 

Those massless indefinite unitary irreducible representations with the defining 
4-dimensional Minkowski representation [2JI2J] = 2J [ l l l ]  are used for 
gauge fields in relativistic field theories. 

With respect to the indefinite unitary group U(1,1) with conjugation x 

diagonal representations of the Cartan subgroup in SU(1, 1) have to be of 
the form 

(m; Z) = (ip; 0) �9 iR ~ u = e-pX3~3/2 e SU(1, 1) (105) 

leading to the unitary supplementary irreducible SL(C~)-representations with 
trivial winding numbers and an imaginary causal number ip 

grpsupplSL(C~ = {(ip; 0)} = iR (106) 

The equivalences classes for the representations in the principal and 
supplementary series are given in Neumark (1963), Gelfand and Neumark 
(1957), and Gel'fand et al. (1966). For the positive unitary representations 14 
one has to discuss also the scalar products for the representations spaces, 
especially for the supplementary series. 

The generalizations for SL(C~), n > 2, with Caftan subgroup GL(CR)"- l, 
are given for the principal representations with (n - 1) real causal units and 
(n - 1) integer winding numbers 

14Already Gel'fand and Neumark (1957) call the requirement of positive unitarity for 
SL(C~-representations 'in a certain sense unnatural'. 
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grpprincSL(C~) = {(ml . . . . .  mn-l; Zl . . . . .  Zn-l)} 

= grp GL(CR) ~-l ~ R " - l  • Z n-I (107) 

(0 . . . . .  0; 2 ]  1 . . . . .  2Jn- l )  ------- [2Jl  . . . . .  2 J . - l l 2 J ~ - i  . . . . .  2J l [  

The supplementary series has to take into account  the diagonal 
[U(1, 1)] structure 

(eio+iZa 0 ) 
e+imx+iz a ~ U(1, 1) for (m; Z) E C • Z (108) 

Therewith the supplementary weights are characterized by coinciding winding 
number pairs and conjugated causal numbers  [more details are given in 
Neumark (1963), Gelfand and Neumark  (1957), and Gel ' fand et al. (1966)] 

(ml . . . . .  mn-l; Z 1 . . . . .  Zn-1) E C n- I  X Z n - I  

with entries (m, ~ ;  Z, Z)  (109) 

4. E N E R G Y - M O M E N T A  M E A S U R E S  

As to be expected from their Cartan subgroups GL(CR) n- l, n >- 2, also 
the groups SL(C~) have reducible, but nondecomposable representations as 
first discussed by Shelobenko (1958, 1959). 

Therewith, I suspect 15 that the GL(C~)-representation monoid with real 
causal units for the equivalence classes o f  all unitary nondecomposable  
representations is given by the representation monoid  for the Cartan subgroup 

monp~incGL(C~) ~ {(Nl . . . . .  Nnlml . . . . .  m~; ZI . . . . .  Z.)} 
( l l 0 )  

= mon GL(CR) n ~- N ~ • R" • Z ~ 

One has for the weight groups with real causal units t6 

grppdncGL(C~) = {(ml . . . . .  m.; Zl . . . . .  Zn)} 

= grp GL(CR) n ~ R n X Z n 

( I l l )  
grp U(n) = { [Z~ . . . . .  Z.] } 

= grp U(1)" ~ Z n 

15A mathematically rigorous classification of all nondecomposable unitary representations of 
GL(C~ for n > 2 would be appreciated. 

16With U(n) ~ U(l) x SU(n) one has to take care of the phase correlations for both unitary 
In 

factors, e.g., relevant for the isospin-hypercharge correlation in the standard model (Saller, 
1992b). 
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If such a conjecture is true, one is led to the suggestion for the harmonic 
analysis of the causal fimespace manifolds 

monprincD(n) ? {(Nl . . . . .  Nnlml . . . . .  mn)} 

= m o n  D(1) n = N n • R n (112) 

i.e., the nondecomposable realizations of the homogeneous spaces D(n) would 
be characterized by n natural numbers Ark E N for the dimensions (discrete 
invariants) and n causal units mk E R (continuous invariants). 

In this section, I shall try to make those structures concrete, following 
the analogies to the abelian case used for the Cartan subgroups. 

4.1. Algebra of Causal Measures 

Since representations of the causal group are characterized by a continu- 
ous real invariant m (mass), it is appropriate to use a Lebesque measure on 
the Lie algebra linear forms. The causal representations (NIm) are expressible 
with Dirac distributions (point measures) ~m ~ ~(m - IX) and their deriva- 
fives, e.g., 

= f dix ~(m - I x ) e  il'tr (OIm)(x) 
J 

(llm)('r) = I dix (~ (mo  ix) 

(~(m - Ix) 
f ~ dix 0 (21m)(,r) 

0 

etc. 

X~'(m - Ix)~ i . ,  
~(m - Ix) }e (113) 

h~'(m -- IX) ~.v ~"(m -- IX) 
�9 l p  i w r  

~(m - Ix) X~'(m - ~)  V 
0 8(m -- IX) / 

A causal measure of the mass space log D(1) r ~ R for the analytic 
manifold D(1) is defined by its property to define a function, analytic in the 
causal translations "r ~ R 

e ~ ~ f dix h(ix)e i~ (114) 

A measure can be multiplied with a complex number�9 Two measures can be 
added and multiplied via the ~-additive convolution, induced by the composi- 
tion in the representation monoid 

(h * h')(ix) -- f dixl dix2 h(IXl)~(IXl + I X 2  - -  IX)h'(IX2) (115) 
J 
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Therewith the causal measures means R have the structure of an abelian 
unital algebra with the unit given by the underived Dirac measure for trivial 
frequency (mass) g0. 

A causal measure hN has the momentum N ~ N if it obeys the conditions 

N ~ I :  m e a s N R =  h~ 
dIx IxNh~Ix) 4= 0 

with the Dirac point measures as examples 

(116) 

k = 0  . . . . .  N -  11 

~eV)(m - IX) ~ ~(m m E meas/v R (117) 

The normalization f dix h (Ix) of  a causal measure reflects the representation 
of the causal group unit 1 ~ D(1). Its first causal momentum will be called 

m = f dIx Ixh(Ix) (118) causal unit: 

With respect to the possibly indefinite unitary causal representations, e.g., 
(llm) in U(1, 1), the measures are not required to be positive definite. This 
feature has to be taken care of  in the probability interpretation of  quantum 
theories. It will be discussed in connection with the spacelike supported parts 
of a propagator, i.e., with respect to the in- and outgoing particle interpretable 
causal representations (Section 5.3). 

The functions arising in the quantization of linear fields (Section 1.2) 
have the D(1)-analysis 

~n('r 2) = ~ dIx h~n)(Ix)e i'T 
3 (119) 

_ l [ 
h~'~ B( 1 , �89 + n) 0(1 - Ix2)(1 - Ix2),,-u2, dIx h(0'~ = 1 

Any dynamics determines a subalgebra of the causal algebra, e.g.: The 
subalgebra measo R is related to the measures for irreducible causal representa- 
tions. Its subalgebra log D(1) r ~ R uses only the point supported Dirac 
measures log D(1) r ~ {gmlm e R I - - i t  is the algebra for the irreducible U(1)- 
representations of the causal group (positive unitary characters). Its discrete 
subgroup with the integers {8~lz ~ Z} ~ Z is used for the time development 
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of a harmonic oscillator with frequency m. Any subset of the causal measure 
algebra together with the unit generates a subalgebra. Such a set may be 
used in a perturbative approach to generate the full subalgebra, associated 
to the dynamics to be solved. For example, the 2-elementic set {~+_mlm -~ 
0}, associated to the irreducible representations e +-imp, generates the causal 
subgroup Z and the associated representations for the quantum oscillator. 

4.2. Representation Structure of Linear Fields 

Linear field theories on the 4-dimensional timespace R(2) (Section 1.2) 
are not compatible with the algebra structure of causal measures. Fields with 
distributive quantization cannot be used as a generating set. The divergencies 
in Feynman integrals, e.g., in the vacuum polarization of quantum electrody- 
namics, involving the undefined product [~/kek(mlx) + is(mix)] 2, show that 
the convolution product does not make sense for linear fields. 

In the distributive quantization of quantum fields (Section 1.2), one uses 
the naive analogue of the 1-dimensional time D(1) structure 

(011m2)(t) ~ cos mt sin mt 
irn sin mt cos mt / 

(cosmt  _ l )eiq  
i sin mt] = I dqo 8(m 2 

(120) 

given by the Dirac measure of the energy-momenta and a frequency qo analysis 

d4q ~(m 2 - q2)(~(qo) = d3q dqo 
~(qo-- ~ + q 2 )  + ~(qo+ ~ + q 2 )  

2qo 
(121) 

The measure, integrated with an irreducible representation e iqx E U(1) of 
the additive translation group x e R(2), describes the quantization of linear 
particle fields 

(ck(mlx) is(mls) 
((011mE))(x) = \is(mix) ck(mlx)] 

qk 
\is(mlx)j~Ck(mlx)~ = "3[ ~ d4q ~(rn2 --q2)~(q~ 

(122) 
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These integrated translation representations are space distributions of repre- 
sentations of the causal group D(1) 

f (~cos  mxo i sin mxo~ 
D(1) ~ e go ~ d3x((OIIm2))(x) = (011m2)(x~ = \ i  sin mxo ~cos mxo] 

(123) 

Such a time-oriented analysis and--in the Poincar6 group--the Wigner 
classification are appropriate for the particle interpretation of a field theory 
(Section 5.3). With respect to the timespace manifold D(2) = D(1) • SD(2), 
the representation of the Sylvester factor SD(2) ~ SO+O, 3)/SO(3) is not 
adequately taken into account--this negligence is the main reason for the 
divergence problems working with linear quantum fields. 

The realization of the Caftan group D(1) -~ SO § (1, 1) in the Sylvester 
factor for linear fields can be seen for the manifolds D(1) • SO+O, s)lSO(s) 
as follows: The SO§ s) scalar contribution in the quantization of linear 
fields (Section 1.2) 

I d l+sq f eiqx is(mix) = j (2,rr) s ~(m 2 - q2)~.(qo)meiqx = ~(x~ dl+Sq "tri ~ m (q 2 _ m 2)e 

(124) 

shows the time D(l)-representation properties by the space integral 

f dSx s(mlx) = sin (125) mxo 

whereas the realization of D(1) in the Sylvester factor for s >- 1 shows up 
in the ordered time integral 

f dxo e(Xo)e(m)s(mlx) = 21ml f dSq e-'qx 
(2,rr)Sq -2 + m 2 

(126) 

r e-I'dl for s = 1 
= ,~ Iml -I,dl [ ~ - ~  e for s 3 

For s = 1, the orthogonal manifold D(1) • is isomorphic 
to the group D(1) • D(1) with elements exp(x0 ~ Ixl). Here the exponential 
exp(-Imxl) represents the space D(1) 3 exp(-Ixl).  For s = 3, the Yukawa 
potential is no representation of D(1) C SD(2) ~ SO+O, 3)/SO(3). 

4.3. Point  Measures  for E n e r g y - M o m e n t a  

For the generalization of the nondecomposahle representations (NIm) of 
the abelian group D(I) to realizations (N~ . . . . .  Nnlml . . . . .  ran) of the 
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homogeneous timespaces D(n) with the Cartan subgroups D(1)", it is conve- 
nient to use the residues of loop integrals for the linear forms R(n) r (energy- 
momenta) of the timespace translations R(n) 

f hk (ihr)k e im'r ~ _  dix ~ ( k ) ( m  - -  Ix)e ip,'r : 

k~ 

hk 
1 d ix  m)l+ k e i~x 

2"rri (IX -- 
(127) 

with a nontrivial constant k e R. Therewith one has as integrands for the 
(1 + N) elements of a D(1)-representation 

D(1) ~ e ~ ~ (NIm)('r) 
~k k 

dix (IX _ m ) l +  k e i~* with k = 0 . . . . .  N (128) 

For example, the fundamental complex 2-dimensional D(1)-representations 
use both poles and dipoles 

(0 (: (llm)(x) ~-- 1 )e = 2"rri ~ ~ tx -1 m e iWr (129) 

The structure of the poles, i.e., the location and the order of the singularit- 
ies, reflects the Continuous and the discrete invariant of the D(l)-representa- 
tion (NIm). The irreducible representations have the irreducible measures 
dixI(IX - m); an additional nontrivial ~" dependence is expressed by the 
nondecomposable measures dix kkl(ix -- m) l§ reducible for k = 1 . . . . .  N. 

The representation elements of D(1) n with Cartan coordinates {~r}~=l 
are products of loop integrals 

D ( 1 )  n 3 e ~ = 

�9 "" 0 )  
. ~  

. . .  e~n  
~" (Nllml)(~l) | 1 7 4  (N.Im.)(~n) 

(ih~Okl"'(ih~)kn e i ( m l ~ l + " ' + m n ~ ' - n )  

kl !'"kn[ 
(130) 

_ 1 

(2xri) ~ ~ d"ix 
~k k l + "" + kne i (  Pq ~ l + " " + p.n~:m) 

( i x l  - -  m l ) l + k l " ' ( i x n  - -  m n )  l + k n  

~kr = 0 . . . . .  Nr 
with [ r  = 1 . . . . .  n 
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As illustrated in the previous subsection, the conventional relativistic 
field quantization for n = 2 uses only D(1)-representations of  the determinant 
in U(1) 

D(1) ~ det e ~ = e ~t+'''+~" = e x~ ,-., e imx~ ~ U(1) (131) 

The correspondingly frugal analogue for the compact  group U(n) is given 
by its U(1)-representations with only one winding number Z ~ Z 

U(n) _D U(1)" ~ e ils = ( ; )  e 1 . . .  0 

"'" "* e iZ(f3l+'''+f3n) E U(1) 
" ' "  e i ~ n  

(132) 

unfaithful for n -> 2. 
If  the Cartan subgroup D(1) n is realized in the homogeneous times- 

pace D(n) 

D(1) --> D(1)" ,--, D(n) (133) 

using Lebesque measures for the tangent structures 

dix on R ---) d"ix = dixl "'" dix. on R " "-. d " 2 q  on R(n) r (134) 

the n Cartan masses (ml . . . . .  m.) for the GL(C~0-weights come as poles of  
the SL(C~-invariant  determinant det q = q" with the nth powers m" of  the 
causal masses 

d ix  e i~T ---) d n i x  e im~i ,., d n 2 q  e iqx 

IX - m (ixt - m0""( ix .  - m.) (q" - mT).-.(q" - m.") 
(135) 

In the conventional field quantization for n = 2 only one continuous 
invariant is used (Section 1.2) 

d ix  e i ~ ~  "-. dn2q  e iqx (136) 
Ix - m qn _ m n 

The invariance group of the i r r e d u c i b l e  p o i n t  m e a s u r e s  for the D(n)- 
realizations 

dnZq ( m l  . . . . .  m n )  ~ R n 
( q n  _ m n ) . . . ( q .  _ m ~ ) '  

(137) 
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is the adjoint group SL(C")/I . .  The  singularities arise for the invariant 
energy momenta  

1 f Ix  for  n = l  
q)~l = Ix(q) = r ~ r  for  n = 2 (138) 

i.e., one real pole for odd rank n of  t imespace and two real poles with opposite 
sign for even rank 

IX~ - m ~ = (Ix - m)(Ix " - t  + mix ~-2 + ' " +  m ~-t)  
(139) 

= m n =  ~{m} for n = 1 , 3 , . . ] }  
{ix(q) R[l~(q)" E I{+--m} for n 2, 4, C_ mIn 

Therewith for even rank, e.g., for the relativistic case, the representations are 
m 2-dependent, 

The  nonabelian compact properties in D(n) ~ D(1)n • SU(n)/U(1)~- 1, 
nontrivial for n -> 2, have to be realized via tensor product  polynomials  
q Q ... (~) q of  degree 2J  ~ N in the energy-momenta,  placed in the 
numerator  of  the integrand 

h t h kl+'''+*" hkl+'"+k"(q | 1 7 4  q)2s times 
(P~ -- m) - - - - - - - z  --'> (P~l -- m01+k""(lx. -- m.) I+k" "" ( q "  --  m T ) l + k ~ ' " ( q  n --  mn) t+kn 

with 2 J  = (n - 1)(k~ + ' - ' +  k.) 
(140) 

Therewith the relevant integrands for the realization of  a t imespace point 
d ~ D(n) are given with its translations x = log d E R(n) 

D(n) ~ e x ~ ( N l  . . . . .  N ~ l m l  . . . . .  m ~ ) ( x )  

hkl+'"+kn(q ( ~ ' " ~  q)2J  times eiqx 
d " 2 q  (q'~ - m T ) l + k " " ( q  n - -  m, , )  

f k  r = 0 . . . . .  N r 

with ~ r  = 1 . . . . .  n (141) 
/ 

[ 2 J  = (n - 1)(kl + ' " +  k~) 

4.4. Realizations of Relativistic Timespace 

The representations of  the rank 2 relativistic t imespace manifold D(2) 
-~ D(1) 2 • SU(2)AJ(1) involve two Cartan masses (ml, m2) E R 2 for the 
Cartan subgroup D(1) 2, 
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D(2) ~ e x ~ (NI, Nzlml ,  m2)(x) 

hkl +k2(q ( ~ . . . ~  q)(kl +k2)times 
d4q (q2 _ m2)l+kl(q2 _ m2)i+kz e iqx with 

kl = 0 . . . . .  Nl 

kz O, . ,  N2 
(142) 

The scalar representations use the irreducible scalar measures 

D(2) 3 e x ,--, (0, 01ml, mz)(x) 

d'* q e iqx 
(q 2 _ m 2)(q 2 _ m 2) (143) 

leading to the well-behaved explicit functions (Section 1.2) 

= r ( d4q 1 eiqx (o, 01ml, m2)(x) 
'IT J ..n.2 (q 2 _ m 12)t,(q 2 __ m 2l)t, 

m21~l(mZx 2) -- m 2 % l ( m ~ x  2) 
= ~(xo)O(x 2) (144) m2-m~ 

(0, 01m, m)(x)  = ~(Xo)O(xZ)~o(m 2x2) 

(o, ol0, O)(x) = e(xo)O(x 2) 

The principal value pole integration (denoted by P) has been used. The 
massless case with the trivial realization is particularly simple. 

The reducible, but nondecomposable realizations with (Nl, N2) = (0, 1) 
are faithful and nontrivial for both the abelian group D(1) and the nonabelian 
boost manifold SL(C~/SU(2)- - they  involve both poles and dipoles 

D(2) 3 e x ~ (0, limb m 2 ) ( x )  

d4q (~ 
(q2 _ m2) (q2  _ m 2) q2 1 m ~2 e iqx (145) 

Here one has the explicit functions with the reducible measure 

~(Xo) f d4q hq eiqx 
,n" J ~ (q 2 _ m ~)p(q 2 - -  m 2)v2 2 

i x k  [m 14~2(m12x2) - m ~ z ( m ~ x  2) 

= ~(x~176 T L (m~ -- 
m ~ l ( m # ~ ) ]  

2 ..-25 -- -Z-T (146) ml--m2 J 
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and the special cases for coinciding and trivial masses 

(0, lira, m)(x) =  .(Xo)O(x 2) (1 

(o, 1,o, O)(x): (o 

i~l/4)%o(m2x2 ) 

ih~l/4 ) 

(147) 

5. FUNDAMENTAL QUANTUM FIELDS 

In quantum structures, representations of causal timespace manifolds 
D(n) are parametrized by operators, i.e., quantum variables: time-dependent 
positions and momenta in quantum mechanics, timespace-dependent fields 
in relativistic quantum field theory. 

Nondecomposable representations (NIm) of the causal group D(1) are 
parametrizable by principal vectors, the irreducible ones (01m) in U(1) even 
by eigenvectors (Section 1.1) There exist pairs of cyclic principal vectors 
(b, b x) in the representation space and its dual V, V ~ C l+N, which are 
U(N§ N_)-conjugated to each other and parametrize the characteristic matrix 
element 17 of the representation 

(b x, b)(x) - (ihX)~e imx e.g., N = 0: 
N! 

N = I :  

(b x, b)(r) = (u*, u)('r) = e im* 
(148) 

(b x, b)('r) = ih're im* 

Only for the irreducible representations are the cyclic vectors unique; in 
general, they are 'gauge dependent' (Sailer, 1991, 1993b). 

Generalized for timespaces D(n) with n --> 1, such pairs of cyclic principal 
vectors--used as operators (Sailer, 1993a)--will be called fundamental  time- 
space quantum operators. 

5.1. The Fundamenta l  Mechanica l  Pair  

Quantum mechanics, n = 1, uses one kind is of fundamental pair--a 
creation-annihilation pair (u, u*) in the complex or a position-momentum pair 
(X, iP) in the 'real' formulation--for the causal group D(1)-representations in 
U(1) and SO(2), respectively: 

17With v E Vand to E V r the short-hand notation (to('r2), V(TI) ) = ((O, I/)(T l --  T2) for the time- 
dependent dual product is used. 

ISThe basically unimportant number of fundamental pairs [iP a, Xb] = Bah, a, b = 1 . . . . .  N 
e.g., N = 3 for the 3-dimensional isotropic oscillator or the quantum mechanical nonrelativistic 
hydrogen atom give rise to decomposable D(I) representations with 'internal' degrees of 
freedom, e,g., with respect to SU(3) (oscillator) and SO(4) (bound states for the atoms), 
respectively. 
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D(1) ~ e t,-. 

( (  [P, P] [X, [u*, u](t) = ( ] / =  eimti . / = (01m)(t) 
f[iP, X] [X, X] ~t" cos mt Mmm sm mt ~ (011m2)(t) (149) 

, - i P J / " ' )  \iM m sin mt cos mt / 

The D(1) representation is generated by the Hamiltonian H = P2/(2M) + 
r, XV2. 

Representations of D(1) with a normalized positive frequency measure 

([u*, u])(t) = f d~ ho(lx)e i~t 

- ( / D(1) 3 e [(liP, X]) ([X, Xl) ~.. I cos ~t sm ~t 
[~([P, el) (IX, -iP])} (t) = - d~2 h~ sin ~t cos ~Lt } 

for t=0:[([u* 'u])(0)  = [u*,u] ~Idlxho(~)  =1  (150) 

[([iP, X])(0) [iP, X] d~ 2 h0(Ix 2) = 1 

arise for the time developments of the ground-state values of the commutators 
in the case of Hamiltonians H = P2/(2M) + V(X) which lead to bound 
states only. 

There may also occur indefinite unitary nondecomposable representa- 
tions of the causal group, if there arise not only bound states, e.g., for a free 
mass point with Hamiltonian H = P 2/(2M) 

D(1) 3 e  t ([iP, X] [X,X] ) (1 it/1M ) 
~" ~ [P, P] IX, - iP]  (0 = 

5.2. The Fundamental  Quantum Fields 

-~ (ll0)(0 E U(1, 1) 

(151) 

Many linear fields are used for the Minkowski translations R(2), e.g., 
lepton, quark, and gauge fields in the standard model of elementary particles. 
Those fields, appropriate for a free theory, do not parametrize realizations 
(N1, N21ml, m2) of the causal timespace manifold D(2), but space distributions 
of time D(1) representations (Section 4.2) with possible spin degrees of 
freedom (Sailer, n.d.). 

For example, a massive Dirac field (Section 1.2) parametrizes the space 
distribution of the U(1) time representation 

D(1) ~ e ~~ ~ {~17, ~I~}(x) = exp(imlx) = ~lkek(mlx) + is(mix) 

for x0 = 0: IV, ~}(fc) = ~/0~(~) (152) 
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In analogy to the fundamental bosonic pairs (u, u*) (quantum mechanics) 
with one causal unit m, fundamental fermionic pairs 19 (b A, b~)A=l, 2 with 
fundamental conjugated SL(C2)-representations [110] and [011] are proposed 
(Heisenberg, 1967) for the timespace manifold D(2) (quantum field theory) 
with two causal units ml. 2. They are assumed to have as dual product (quantiza- 
tion) a faithful D(2) ~ D(1) • SL(C~0/SU(2) realization (0, llml, m2) 

D(2) ~ e x ,-. (0, limb m2)(x) 
(153) 

with {b x, b}(x) = ~(Xo) ~ d4q q eiqx 
"iT1 J ,.fiE (q 2 __ m 2)e(q 2 _ m 2)p2 2 

The characteristic property of the fundamental fields is the representation 
of the external and internal operations, used for the definition of the timespace 
manifold D(2) -- GL(C2)/U(2), not some linear field equation. The tangent 
flat timespace interpretation with linear particle fields, i.e., with positive 
unitary representations of the Poincar6 group (Wigner, 1939) SO+(I, 3) • 
R(2) for a given dynamics and the determination of a measure h (~2, ~ )  for 
a decomposable realization--in analogy to h(t.l, 2) in the previous subsec- 
t ion- i s  the essential part of the solution of a dynamics. 

A parametrization of the causal measure with point supported realizations 
may be useful for a perturbative approach to generate the causal subalgebra 
associated with a given dynamics. Being part of the causal measure algebra, 
the product representations are well defined, i.e., there arise no divergences, 

5.3. Particles in Fundamenta l  Fields 

As familiar from regularization recipes, the price to be paid for the 
relativistic causal representations with convolution properties (no diver- 
gences) is the indefinite metric for some representations of the timespace 
translations R(2), i.e., an indefinite conjugation, e.g., U(1, 1) (Section 3.1). 
This price would be too high if it invalidated a probability interpretation of 
the experimental consequences. A closer analysis of the manifold D(2) and 
its tangent Minkowski translations R(2) reveals a rather subtle situation: The 
causal und the spacelike submanifolds R(2)causal and R(2)space, respectively 
(Section 2.1) are reflected in the two parts of Feynman propagators (Section 
1.2). The field quantization realizes the timespace manifold D(2) and is 
supported by the causal submanifold of flat timespace R(2). The asymptotic 
consequences of a dynamics, however, are interpreted with the spacelike 
submanifold for in- and outgoing particles. The spacelike submanifold arises 

19For a full-fledged parametrization, also U(2) internal hyperisospin degrees of freedom have 
to be introduced to take care of possibly nontrivial properties of the coset U(2) in the timespace 
manifold GL(C~/U(2). 
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only as part of the tangent translations R(2) on the timespace manifold D(2) 
(Section 2.1). 

The fundamental quantum fields introduced in Section 5.2 cannot be 
expanded in terms of energy-momenta eigenvectors only, i.e., with positive 
U(1) representations of the timespace translations R(2). The causal spreading 
on four dimensions leads to negative and derived Dirac measures of the 
energy-momenta R(2) r, e.g., 8'(m 2 _ q 2), related to reducible, but nondecom- 
posable representations used for the 'hyperbolic stretching' group SO+(1, 1) 

D(1). Therefore, the fundamental fields contain, on the one hand, positive- 
definite U(1)-representations of the timespace translations, describing parti- 
cles, e.g., leptons; on the other hand they involve indefinite, e.g., U(1, 1)- 
representations of the translations which describe interactions via fields with- 
out particle content. Examples for nonparticle fields are the Coulomb interac- 
tions (no energy eigenvectors) in the four-component electromagnetic field 
(Nakanishi and Ojima, 1990) Ak(x) which has only two particle degrees of 
freedom (the photons with left- and right-handed polarization). The quantiza- 
don of the electromagnetic field involves U(I) and U(1, 1) representations 
of the translations (Sailer, et al., 1995) as reflected by the underived and 
derived point measures 

f d4q [_e2,qjk~(q2)- hoqkqJ~'(q2)]r [A k, AJ](x) = (154) 

with e02/4~r the fine structure constant and h0 a gauge-fixing parameter. The 
Fadeev-Popov ghosts are another example for indefinite unitary representa- 
tions of the translations (Saller, n.d.). 

The spacelike (asymptotic) behavior of a particle field ~ (Section 1.2) 
is completely given by the Fock value of the 'quantization-opposite' commu- 
tator, e.g., for the electron field 

for X 2 < 0: <c'~lIg>(X) = < [ ~ ,  ~IF]>(X) 

= EXP(imlx) = C(mlx) + i~kSk(mlx) (155) 

The spacelike behavior is decisive for the probability interpretation here 
the indefinite metric has to be avoided. In- and outgoing particles are tangent 
spacelike phenomena. 

The spacelike behavior of particles is described explicitly by 

( C(mlx)~ m 2 ( -1  I 
iSk(mlx) ] = ~ r 4 ~ \  mxk/ 

O[ 'm2x ' ] 
• Om2x-------- ~ log - - ~  %o(m2x 2) - ~o(m2x 2) (156) 
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In addition to the functions %,, given in Section 1.2,  it involves the functions 

~n(~ 2) ----" n! '~ (-{2/4)J j~=oj!(j + n)! [q~(j + n) - 2~/o)1, 

1 1 
q~(j) = 1 + ~ + . . . .  (157) 

J 
j> - - l :  

q~(O) _ lim [q~(j) - log j] = 0.5772... 
~/0 - 2 j - ~  (Euler's constant) 

For relativistic timespace D(2), the quantization distributions ek(mlx), 
s(mlx), and exp(imlx), on the one hand, and the Fock functions C(mlx), 
Sk(mlx), and EXP(imlx), on the other, are completely different, whereas their 
analogues coincide for time D(1) (Section 1. l) 

(158) 

(cosm,  
i sin mt] = [ dqo ~(m 

=fdqo~(m2-q2)e(m)(~o)eiq~ 

The Fock functions of the position-momentum pair for irreducible causal 
representations in U(1) are exemplified by the harmonic oscillator with intrin- 
sic length 14 ----- 1/~ / ,  

({u*, u})(t) = e imt 

(({ ie, x}> ({x,x}> ' . .  ( 0 
({P, P}) ({X, -iP})) (t) 1/l 2 

//( cosmt //sinmt  
1 . cos mt ] ~ s l n  m t  

(159) 

The value for t = 0 reflects the U(1)-scalar product for the creation- 
annihilation operator pair (u, u*) 

1 
(u'u) = 1, (uu*> = 0 ~ 2(X 2) = 12, 2(P 2) = 73 (160) 

l "  

Going from time translations R(1) to relativistic timespace translations 
R(2), the point R(1)space = {0} (presence) is 'blown up' into the spacelike 
submanifold R(2)sp~e. For particle fields, i.e., with U(1)-representations of 
the translations, e.g., for the chiral components of a Dirac electron field 
* ( x )  = ~x~ the creation and annihilation operators for the particle I,r(x):, 

(u (q,  u*(q)) and antiparticle (a (q), a*(q)) involved 
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f d3q / I m l  er e/Xqu(q) + e-iXqa*(q) 

d3q /Iml e_f;;i 2 e'Xqu(q) - e-~xqa (q) 
r(x) = ~ ~/Iq01 ~/-~- (161) 

with q = (Iq01, q), Iqol = x/m 2 + q-2 

= ~ Artanh 
Iql 

I q I Iq01 

have the U(1)-scalar product 
. . . . .  

(u*(p)u(q)) = (a*(p)a(q)) = (2rr)38(q - 
. . . .  ( 1 6 2 )  

(u(p)u*(q)) = (a(p)a*(q)) = 0 

A rest system, used for the experiments, defines a decomposition of 
R(2) into time and space translations and a Lebesque measure factorization 
daq = d3qdqo . A corresponding representation of the spacelike behavior 
shows the spherical waves for the particles 

-, _ m 2 f " 
C(mlx) (2,rr) 2 j dqo ~ ( q 2  _ m 2) s m ~ l X l l r n ~ l  , d3x C(ml~) = 1 

(163) 

Only the U(1)-representations of the translations have a positive-definite 
scalar product as expressed by the Fock state. The indefinite unitary represen- 
tations have an indefinite inner product (Section 3.2), as characterized by 
(~ ~ 0 for U(1, 1). Here the abelian U(1). Fock form is inappropriate. It has 
to be replaced by the nonabelian Heisenberg-Killing form (Sailer, 1992a), 
leading to trivial spacelike contributions in the Feynman propagator. 

In the nondecomposable point measure approximation for the fundamen- 
tal fields for the realization of the timespace manifold only the U(l)-represen- 
tation of the translations can give rise to in- and outgoing particles. This is 
effected by the familiar Feynman integration prescription for a particle at its 
pole in the complex energy-momentum plane using a limit vanishing imagi- 
nary part m 2 _ io (Section 1.2) 

(~b• = i f d4q q e iqx (164) 
,IT2 (q 2 _ m~ + io)(q 2 - m 22)e2 

The representations of the translations which cannot be spanned by energy- 
momentum eigenvectors, i.e., related to the reducible, but nondecomposable 
representations--here the dipole--are confined to the causal submanifold 
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with the pr incipal  value integration. They  g ive  rise to interact ions,  not, how-  
ever,  to part icles.  
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